Box optimization

How to make a box

Take a cardboard of length I & width w centimeters as shown in figure-1

Cut four squares from the edges of the box of h-by-h centimeters each corner. Remove these four squares as wastages & fold along the side to make a box of

length I-2*h,

width w-2*h &

height h centimeters as shown in figure-2

Problem narration

You are requested to make a box from a cardboard of suitable dimensions, having

- 1. a volume of 35000 cm3 with a margin (for explanations on margin see annexure-1) of 3%.
- 2. Business requirements imposes following additional constraints.
- 3. Length to width ratio for the box must be 2 with margin of 5 %.
- 4. Length to height ratio of the box must be 10 with margin of 15%
- 5. Minimum height of 10 cm is required.
- 6. Length & width of the cardboard used must be an integer.
- 7. Height cut from this cardboard must also be an integer.

I use lingo software for solving this problem.

Lingo code for solving this problem is pasted here.

```
model:
data:
vreq=35000;
mrgn1=3;
mrqn2=5;
mrgn3=15;
lwr=2;
lhr=10;
hmin=10;
enddata
v11=vreq*(1-mrgn1/100);
v12=vreq*(1+mrgn1/100);
v21=lwr*(1-mrgn2/100);
v22=lwr*(1+mrgn2/100);
v31=lhr*(1-mrgn3/100);
v32=lhr*(1+mrgn3/100);
```

```
el=1-2*h;
ew=w-2*h;
eh=h;
ev=el*ew*eh;
ev>=v11;
ev<=v12;
elwr=el/ew;
elwr>=v21;
elwr<=v22;
elhr=el/eh;
elhr>=v31;
elhr<=v32;
eh>=hmin;
wstg=4*h^2*100/(1*w);
min=wstg;
@gin(l);@gin(w);@gin(h);
end
Global optimal solution found.
  Objective value:
                                                 6.144393
                                                 6.144393
  Objective bound:
                                                 0.000000
  Infeasibilities:
  Extended solver steps:
                                                        1
  Total solver iterations:
                                                       54
                                                     0.05
  Elapsed runtime seconds:
  Model Class:
                                                    MINLP
  Total variables:
                                       10
  Nonlinear variables:
                                        6
  Integer variables:
                                        3
                                        15
  Total constraints:
  Nonlinear constraints:
                                        4
  Total nonzeros:
                                        30
  Nonlinear nonzeros:
                                        10
                                Variable
                                                    Value
Cost
                                     VREQ
                                                 35000.00
0.000000
                                   MRGN1
                                                 3.000000
0.000000
                                   MRGN2
                                                 5.000000
```

MRGN3

LWR

LHR

HMIN

15.00000

2.000000

10.00000

10.00000

0.000000

0.000000

0.000000

0.000000

0.000000

Reduced

0.00000	V11	33950.00	
	V12	36050.00	
0.000000	V21	1.900000	
0.000000	V22	2.100000	
0.000000	V31	8.500000	
0.000000			
0.000000	V32	11.50000	
0.00000	EL	85.00000	
0.5851803E-01	L	105.0000	-
	Н	10.00000	
1.228879	EW	42.00000	
0.000000	W	62.00000	_
0.9910312E-01	EH	10.00000	
0.000000			
0.000000	EV	35700.00	
0.00000	ELWR	2.023810	
	ELHR	8.500000	
0.000000	WSTG	6.144393	
0.00000			

Solution suggest that you need to take cardboard dimensions as

L=105 & w=62 cms.

Cut height of 10 cms.

Fold it to make the box which will have volume of 35700.00 cm3 effective length/width ratio= 2.023810

Effective length to height ratio= 8.500000

Height is equal to 10 cms.

All are in integers

With this configuration your wastage will be of 6.144393 % which is relatively higher but it is the minimum. any other combination will give wastage % higher than this.

Annexure-1

margin

What is margin?

If v is the value required & m is the margin in then acceptable values are in between $v^*(1-m/100)$ & $v^*(1+m/100)$

If volume of the box required is 35000 cm3 with a margin of 5 % means acceptable volumes are in between 33250 & 36750 cm3